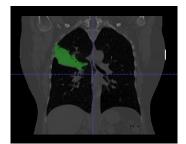

Note

Please feel free to photograph and share these slides on social media.

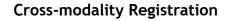
<u>Xia Li</u>, Muheng Li, Damien Weber, Tony Lomax, Joachim Buhmann, Ye Zhang Paul Scherrer Institut, ETH Zurich

Beyond Voxel-Based Methods: Continuous Motion Modeling for Enhanced Deformable Image Registration



Deformable Image Registration in Radiotherapy

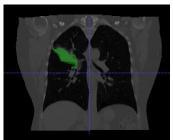
Intra-fractional Motion Modeling



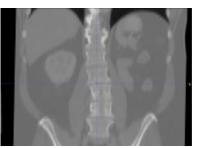
Inhale phase

Inter-fractional Anatomic Changes

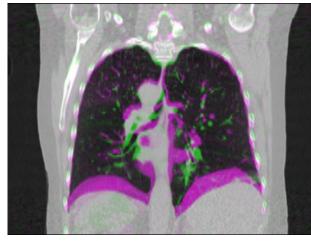
Pre-treatment



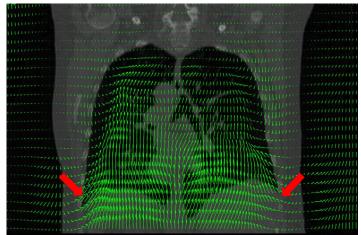
MR


СТ

Exhale phase



Challenges of Deformable Image Registration in Radiotherapy

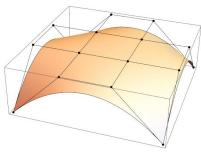

Large Deformation

- Breaks the small motion assumption
- The linear approximation turns invalid

 $I(\mathbf{x} + \mathbf{u}) = I(\mathbf{x}) + \nabla I(\mathbf{x}) \cdot \mathbf{u}$

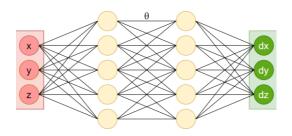
Sliding Boundary

- Break the spatial smooth assumption
- Hard to model the continuity regularizations


Spatial Continuous Motion Modeling

Grid-based Representation

-	-	-	~	~	1	1	1	1	1	1	٦	۸.	1	~	~	•	•	•	•
-	-	-	-	~	1	1	1	1	. 1	1	۸.	\$	~	~	~	•	•	+-	•
-	-	-	-	-	~	1	1				۰.		~	~	~	•	•	+	•
-	-	-	-	-	-						•		~	-	-	+	•	•	-
~	~	~	-	-	-	-					•	•	•	-	-	-	-	-	-
~	\sim	\sim	~	-	-	-								-	-	-	-	-	-
Υ.	\sim	\sim	~	~	-	-				1				-	-	-	-	1	1
Υ.	×	×	8	•												1	1	1	1
¥.	x	x														1		4	4
	4	4															4	4	4
4	4																	4	-1
4	4						-										x	A	۰,
1	1	1	*	*												. *	8	×	1
1	1	*	*	-	-	-			-	1	-		-	-	-	~	\sim	\sim	\mathbf{x}
~	-	-	٠	-	-								-	-	-	-	\sim	\sim	~
-	-	-	-	-	-	~	*					*	-	-	-	-	~	-	~
-	•	•	÷	-	*	~		•			1	1	1	-	-	-	-	-	1
-	•	•	•	•	~	~	^	۸.			,	1	1	-	-	-	-	-	-
-	•	•	•	~	~	~					1		1	-	^	-	-	-	-
-	•	•	*	~	~	1	1	٦.	1	1	1	1	1	1	~	-	-	-	-


- Optimize the whole DVF map
 - Slow convergence
 - Heavy storage
- Limited smoothness
 - Only from regularization
- Allows for sharp gradients

BSpline-based Representation

- Optimize the B-Splines
 - Fast convergence
 - Light storage
- Explicit smoothness
- No sharp gradients
 - Not suitable for sliding boundary

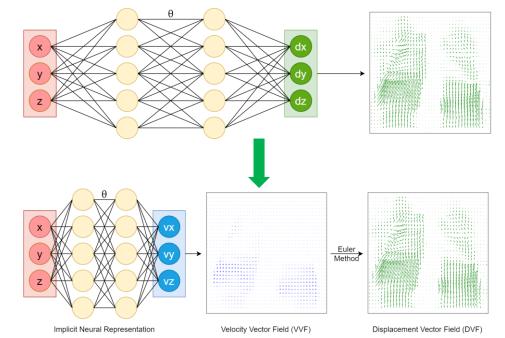
Implicit Neural Representation

- Optimize the network parameters θ
 - Fast convergence
 - Light storage
- Dynamic trade-off between spatial smoothness and sharpness
 - Adapted by optimization
 - Suitable for sliding boundary

Temporal Continuous Motion Modeling

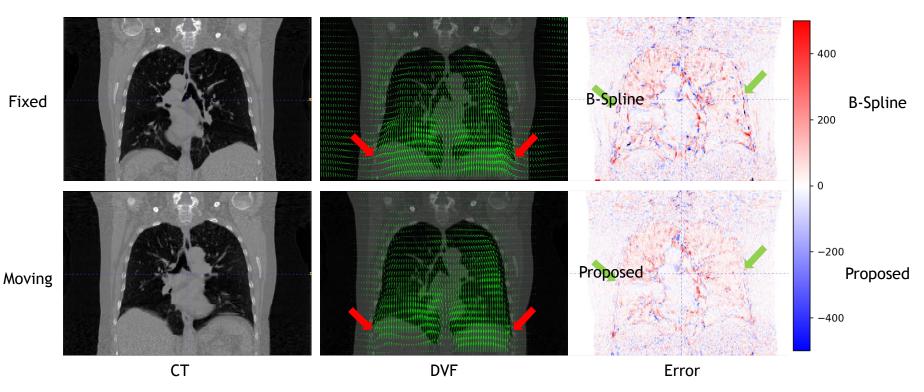
Estimate large deformation is challenging:

• Decompose large deformation into small steps

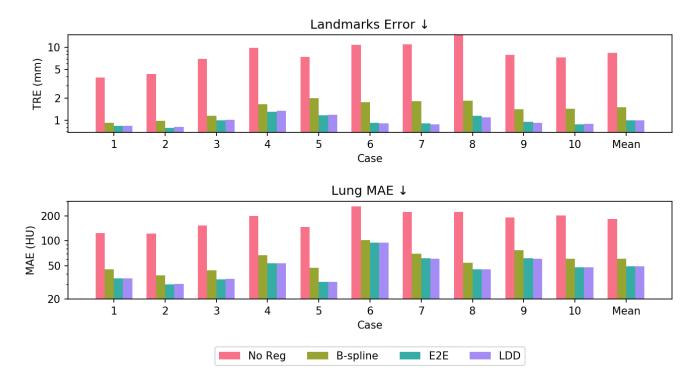

Integrate VVF to DVF by the Euler Method

ETH zürich

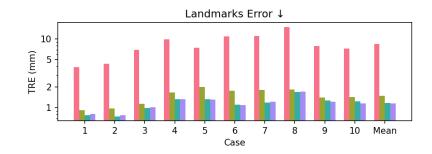
• Suitable for large deformation

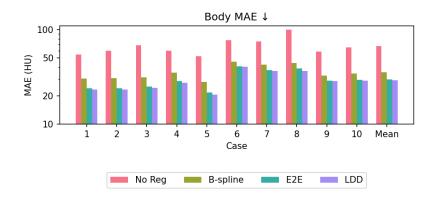

PAUL SCHERRER INSTITUT

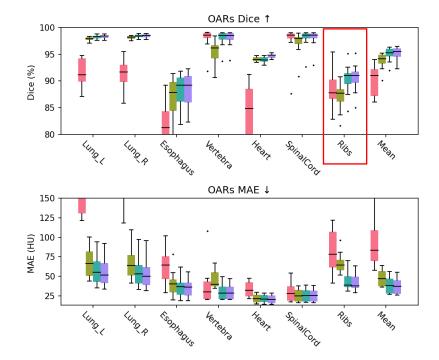
Spatial Continuous Only: End-to-End (E2E)



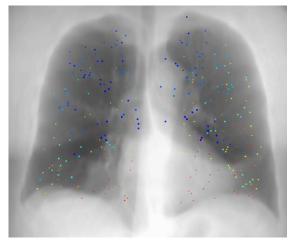
Spatial and Temporal Continuous Large Deformation Decomposition (LDD)

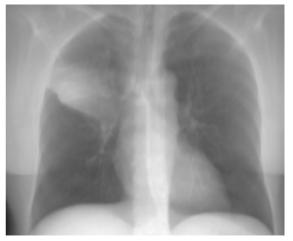

Qualitative Comparisons on the DIRLab dataset




Quantitative Comparisons: Trained inside the Lung Region

Quantitative Comparisons: Trained over the Whole Body

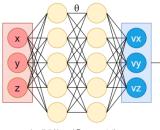




Benefits From the Continuity: Forward Warping and Super Frame Rate

Intra-fractional Motion Modeling

Inter-fractional Anatomic Changes

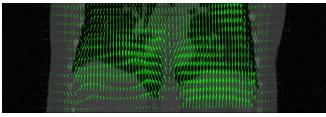

Supine to Upright

- Inputs are only two extreme phases
 - Inhale \rightarrow Exhale, Pre-treatment \rightarrow Post-treatment, Supine \rightarrow Upright
- Once fitted, can integrate DVF from any t any location to any t'
- Outputs are super-frame rate and (super-resolution) 4D images

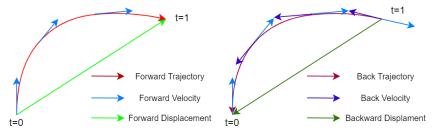
Conclusion

• A spatial and temporal smooth modeling for intrafractional motion, good at large deformation.

																													.1
																												:u	1
																									-	-	E	_	
																										. N	Л		r
			٠									٠															•••		
		٠	1				1	٠	*																				
		1	1	1	1		1	1	1																				
	۰.	'	1				•																						
	1	1	1				•																						
	1	1	1								1																		
		٠																	۰.										
		٠							1										۰.			2							
																			۰.										
																		•	•										


Euler Method		
-----------------	--	--

Implicit Neural Representation


Velocity Vector Field (VVF)

Displacement Vector Field (DVF)

• It outperforms previous methods in every evaluation metrics, especially on the sliding boundary.

• It also provides possibility for reversed trajectory (forward warping).

• It enables the potential application in super frame rate and super-resolution

One Thing More

Further Presentations of This Project

- ESTRO 24 @Glasgow,
 - **Upright radiotherapy:** Hope or hype?
 - Monday, May 06, 8:45-9:00
 - Hall 3
- ICCR 24 @Lyon,
 - Rising Star Competition
 - Tuesday, July 09, 9:45-10:00
 - Auditorium Lumière

Project page

#